How To Install Our Latest Kool Wrap Exhaust Wrap Insulation

First, you need to work out how much of our Kool Wrap exhaust wrap do you need.

If you are wrapping smaller diameter pipes up to 37mm (1.5”), use a 25mm wide wrap. If your pipes are larger than 377mm in diameter then choose the 50mm (2”) wide wraps.

A Harley Davidson has larger primary pipes and will typically use 15m of wrap. A 4-cylinder engine will also use 15m while a V8 will require 2 15m rolls.Kool Wrap Titanium Exhaust Wrap on headers

Koolwrap offers its standard range fibreglass insulation wraps in white, natural (cream or tan) and black. If you are racing, then your pipes can easily get red hot and we would then recommend our high temp range of either a Vermiculte coated fibreglass wrap or our Titanium wraps. Our Titanium wraps will withstand up continuous exposure up to 1,800°F or 980°C. The melting point is a sky high 2,500°F or 980°C.

You do not have to dampen your Kool Wrap exhaust wrap before applying as our latest high-tech wraps are more flexible than older style wraps and confirm well to corners.

However, there is no harm dampening the wraps if you choose to. It may help to get a tighter finish and can help reduce the small fibres that come off the wraps and can cause skin irritation. Always use gloves and long sleeves when applying. If you decide to dampen your Kool Wrap exhaust wrap, do not soak the wrap in a bucket. Simply dampen the wrap under a tap or use a spray bottle.

It is easier if you work out approximately how much wrap you will need for each pipe before you start and cut a separate length of wrap for each pipe. This avoids trying to pass a large roll of wrap around the pipes.

Fold over the first 15cm of wrap to avoid a fraying end and to provide a tidy start. Then overlap the first 1-2 wraps to lock it on place. You can also add a stainless steel tie at this point to firmly hold your starting point. Then wrap slowly around the pipes using 5-8mm overlap (1/4”). The overlap will naturally increase on the inside of the bends. Keep tension on the wrap to give a nice tight finish.

You can finish your wrap with a spray paint aerosol can. You could choose a clear or a colour of your choice. This will help to lock down any loose fibres and help prevent liquids and dirt from staining your wrap.

You will initially notice the wrap will smoke when you first start your engine. This will disappear after 15-30 mins.

Products You May Like

[woo_product_slider id="19968"]

Formula 1 Exhaust Wrap

F1 Exhaust wrap heat protection
F1 Exhaust wrap heat protection

We are big Formula 1 fans here at Kool Wrap and we were delighted to see Daniel Ricciardo win the Chinese Grand Prix last week.

The Formula 1 teams are notoriously secretive and we rarely see behind the scenes photos of their technology. But we recently came across this photo of an unidentified Formula 1 engine from winter testing and you can easily see that they have used exhaust wraps or shielding to contain exhaust heat temperatures.

Heat management is extremely important in F1. Air intakes for intercoolers, radiators and oil coolers need to be kept to a minimum as they create aerodynamic drag and cost valuable lap time.

Racing has always been a fantastic test bed for new technology. Many previous inventions find there way onto our roadcars such as disc brakes, seat belts and fuel injection.

Today’s Formula 1 engines have reached amazing new levels of efficiency.  If we look at the energy stored in racing fuel (I will not go into how energy is never created, it is just transformed from one place to another) the engine designers job is to convert as much of that stored energy into twisting power. Petrol engines have always been fairly inefficient. When we convert petrol into heat, some of that energy pushes down the piston to turn the crank, but most of that heat energy disappears out of the exhaust pipe or into the cooling system.

A typical petrol engine in a late model car has an efficiency score of around 20%. That means 80% of the thermal efficiency is lost in exhaust gas, friction etc.

Mercedes F1 announced late last year that they have exceeded 50% thermal efficiency. This helps to explain how they can make 900+hp from a 1.6 litre V6 engine!

Advances in heat management have contributed to these efficiency gains. Mercedes have tried to keep as much heat energy inside the exhaust pipes so that it can drive their turbocharger to both create turbo boost pressure but to also generate electricity that can power their hybrid systems.

We will leave Formula 1 engine technology discussions for another blog later this year, but we can expect to see standard roadcars of the future doing a far better job of converting fuel into usable energy.

Products You May Like

[woo_product_slider id="19968"]